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ABSTRACT:

It is shown that by squeezing the vacuum fluctuations of the electromagnetic field the

quantum fluctuations of the optical forces exerted on laser cooled two-level atoms, can be

dramatically modified. Under certain conditions, this modification in concert with the enhanced

average forces can lead to equilibrium temperatures below those attained under normal vacuum

fluctuations.

INTRODUCTION:

Laser cooling of atoms in a quasi-resonant standing laser wave has been attracting

considerable attention during the past few years 1. Another exciting subject has been the

modification of the statistical properties of the vacuum fluctuations of the electromagnetic field.

Reduction of these fluctuations in one quadrature phase of the field by almost an order of

magnitude has been already realized in the laboratory. It is well accepted that the minimum

equilibrium temperature of laser cooled two level atoms is determined by the interaction with the

vacuum fluctuations of the electromagnetic field.This raises the question whether the equilibrium

temperature of two level atoms in squeezed vacuum can be lowered below the normal vacuum level

and in particular below the so called "Doppler limit" of KbT= hF/2 for two level atoms.

In the following, the physical origin of the optical forces in a standing laser wave is

described and an intuitive model of the effects in a squeezed vacuum is offered, the modified force

in squeezed vacuum is presented and compared to the force in a normal vacuum. In order to find

the equilibrium temperature the modification of the fluctuations of these forces in squeezed vacuum

is calculated. This calculation show, under certain conditions, a dramatic modification of these

fluctuations relative to the normal vacuum state, it is found that, in an intense standing wave, the

reduced fluctuations in concert with the enhanced average cooling force can lead to equilibrium

temperatures below those obtained under normal vacuum fluctuations. Moreover, under certain

ideal conditions even sub-Doppler temperatures may be reached. In the running wave case,

however, the temperature can not be lowered below the normal vacuum level. In addition to being

of potential use for laser cooling, these results offer an interesting glimpse into the quantum nature

of the momentum exchanges between the atoms and the field.
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A slowly moving atom (kv<F) in a low intensity standing laser light wave experiences a

velocity dependent force. This "radiation pressure" force is well understood in terms of absorption

and spontaneous emission. As first envisioned by H_nsch and Schawlow 2, the atom experiences

an increased absorption of photons from the laser beam which is shifted closer to resonance due to

the Doppler effect. This velocity dependent differential absorption can provide a cooling force for

laser detuning to the red side of the atomic transition or a heating force for blue detuning. At high

intensity, however, stimulated emission can change the sign of the force to a heating force at red

detuning and to a cooling force at the blue side of resonance 3-4.
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Figure 1: Probe absorption as a function of its detuning from a pump tuned 20F to the red of an atomic

transition.A)at low pump intensity the probe sees higher absorption at positive detuning closer to the atomic

transition B)In normal vacuum at high pump intensity the TWM process is induced leading to less absorption for

frequency shifts closer to the atomic transition. C) At the same high intensity as in trace B but in squeezed vacuum

the TWM process can change its lineshape leading to an additional cooling force.(Ref. 8 eq. 12 with N =0.1,

M=0.33, _= rt and f2=81D.

This stimulated force(or "dipole force") has been explained within the framework of the

dressed atom model 5 and equivalently as resulting from Two Wave Mixing 6 (TWM). The TWM

resonance appears in pump-probe spectra as a dispersive lineshape (as a function of the probe's

detuning from the pump). This feature has a width of the excited state decay rate, F, and shows

decreased absorption at probe detuning from the pump closer to the atomic transition (see figure

lb). In this process the atom absorbs one photon from one wave and emits a photon into the

164



counter-propagatingwave,thusacquiringamomentumkick of 2hk. This processusuallyrequires
high laser intensity ; however,it hasbeenshownto occurat lower intensity when the normal

relationbetweenthedipoledecayrateF2 andtheexcitedstatedecayF ( 1-'2=0.5F ) is modifiedby

theinclusionof phaseinterruptingevents( 1-'2>0.5F ). This effect is dueto the appearanceof a

TWM termatlower orderin laser intensityproportionalto [F2/F-0.5]P whereP is thesaturation

parameter.This phenomenonis closelyrelatedto thedephasinginducedextraresonancesin Four
WaveMixing. Theseresonances,which originally havebeenstudiedby Bloembergenandco-
workers, are induced wheneverthe normal decayratesof the the atom are modified. Their
relevanceto thestimulatedforceis discussedin moredetailin reference6.

Armedwith this insight into theconnectionbetweenTWM andthestimulatedforce,it is

instructive to find the effect of squeezingon theTWM process.Gardiner7 hasshown that in

general squeezingthe vacuum fluctuations results in two different decay rates for the two

quadraturesof theatomicdipole,oneof which is largerandtheothersmallerthanthenormalF/2

valueinordinaryvacuum.Hence,afterthedecayof thefastdecayingquadraturecomponentof the

atomicdipoleone is left with theslowly decayingcomponentwhich meansthat F2 canbemuch

smallerthan0.5 F. Onecanthereforeimmediatelyseethatthe"extraresonant"TWM processcan

alsobe inducedin squeezedvacuum.Calculationof the lineshape89 of this processshowsthat

indeedthe TWM lineshapebecomesphasedependent andcaneven changeto a "dispersive"
lineshapewith oppositesign(largerabsorptioncloserto theatomictransition)asdemonstratedin
figure lc. This indicatesthatin squeezedvacuumthestimulatedforcecanbeinducedatlow laser
intensity. Moreover,it canchangesign to provideanadditionalcooling force insteadof heating
for red laserdetuningfromresonance.

THE AVERAGE OPTICAL FORCES IN SOUEEZED VACUUM

The physical system under investigation is a slowly moving two level atom (k v<< F) in

either a standing or a running wave (a motionless atom is considered in the fluctuations analysis).

The atom is embedded in a broad band squeezed light, so that all of the modes coupled to the

atoms are squeezed. The bandwidth of the squeezing is broad enough to appear to the atom as a 6

correlated squeezed white noise. The correlation functions for the multi-mode squeezed field can

then be written as 7.

<bt(t)b(t')> = FN6( t - t' ) , <b(t)bt(t')> = F(N+I)8(t - t' ) Eq.1

<b(t)b(t')>=<bt(t)bt(t')>* = FMe( -2i°-_0t + 2ik.r) 5( t- t' )
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Whereb,bt aretheoperatorsdefinedin termsof thepositiveandthenegativefrequencypartsof
this field, N andM arethesqueezingparameters,N isproportionalto thenumberof photonsin the
squeezedvacuum,while M< N(N+I) signifiestheamountof correlationbetweenthe sidebands
andtheequalitymaximumsqueezing.In thefollowingwewill chooseM to berealandpositive.

The Hamiltonian describingthe interactionof the atomwith the quantizedmultimode
radiation field and a classicalcoherentfield is given in the electric-dipoleand rotating-wave

approximationby 10. Eq.2

H = 2}-hm0_22+ Had- (laE0e-i°_tt_t+ _*Eoe+iC°t) + h(_tb + b*_)

where m0 is the atomic resonance frequency, _22 , tJ=(_l 2 and &=o21 are the atomic operators, kt

is the atomic dipole moment, H 0 is the free Hamiltonian of the field, and E 0 is the amplitude of the

coherent field. One can then find the master equation for an atom in squeezed vacuum and derive

equations of motion for the atomic operators whose expectation value is given by:

< 42 > = - ']'< t_12 > - I'M< t312 >* + _< D > eq.3

< I) > =- F(2N +1)< D >+ F - 2[f2"< c12 >+f2<c_12 >*]

The average force can now be found by calculating, the expectation value of the atomic variables

and subsequently the first order corrections due to the atomic motion 3. This gives rise to the

following expressions 11 for the expectation value of the optical forces acting on the atom in the

running<F> and standing wave<FS> :

hkFP [ 2(2N+l)A 1(F) - 2(2N+ I+P) 1-_ ( k .v )
z(2N+I+P) Eq.4

oohAP

cI_ (2N+I+P)

4_Mcos( 2Q)P + I_lCI_ (2N+I---P) - 2zP2
1-

FZ_I__(2N+ 1+P)

where P is the modified saturation parameter in squeezed vacuum given by P= 2lf212q__/)_ ,

f2=ei*laF_./h and the other quantities are defined by: FI=(2N+I)F, q_ = 2N+l - 2M cos(2q_), )C

= I_ 2 - F2M 2 , 7=F1/2 - tA, A = A + FMsin(2_), where A is the laser detuning from the atomic

resonance.
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It is instructive to examine the new expression of the force in the standing wave by

comparing it to the force in ordinary vacuum. In this limit (N =M=0) the force is reduced to the

well known expression of the force (ref.3 eq. 18) given by:

-" P I F2(1-P)- 2]'_2P2 _" v]_)=-ohA _ 1- r(l+p)_ 2 eq.5

Note that in this limit the first term in the numerator of the velocity dependent part of eq.4 is zero

while the other two terms are reduced to those of eq.5. The striking appearance of the additional

term in squeezed vacuum is analogous to the result of ref.6. In this case, the introduction of

classical phase noise results in the appearance of an extra term -41',/12[F2/1-'- 0.5]P , (F2=F/2+F_

where F_ is the rate of the phase interrupting events).This term can give the stimulated force at

lower intensity when F 2 / F>0.5 as phase noise is added.

Notice that in the case of F 2 / F< 0.5, this term can also be induced but with opposite

sign. This is indeed the case with quadrature squeezing, which can result in either larger or smaller

phase noise than the vacuum level.This in turn introduces two different decay rates for the two

quadratures of the atomic dipole.One of these, F 2 x = F(N+M+0.5), is larger and the other, F 2

x=F(N - M+0.5 ), is smaller than the normal F2=F/2 value. Therefore, the sign of the extra term in

eq.2 4[1712-F2M2]M cos(2¢) P can be controlled by the relative phase _ of the driving field with

respect to the squeezed vacuum. Hence, the stimulated force can not only occur at lower laser

intensity, it can change sign to provide an additional cooling force at red laser detuning from

resonance.This modification of the force can be further correlated with the TWM lineshape which

becomes strongly dependent on the laser phase _ and can even change sign as indicated by our

intuitive analysis.

Other important modifications of the force in squeezed vacuum are described by the term,

A+FMsin2_. This term gives rise to a force at zero detuning as well as strong variations of the

force at small detuning (A<FMsin2¢). These effects can be understood by noting that the

dephasing induced lineshape of TWM at resonance is absorptive in normal vacuum, but it can be

transformed to a dispersive lineshape in squeezed vacuum, giving rise to a force at resonance. In

addition it has been shown that the TWM can have sub-natural linewidth at small detuning 7-10

This indicates that one can obtain arbitrarily large cooling forces at small detuning as the number of

photons in the squeezed vacuum N, and therefore the amount of squeezing, is increased. This

can be understood by noting that F2y=F ( N - M+0.5 ) in the limit of N>>I becomes arbitrarily
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small, F2y= I"/8N.

In the analytic solution shown above the force is calculated only to first order in velocity

(i.e a linear velocity dependence is assumed), this is correct only for small velocities kv<<F.

Numerical solution of the OBE, however, can provide the full velocity dependence of the force.

This solution is shown in figure 2 for ordinary (trace A)and squeezed vacuum (trace B). This

figure demonstrates that the stimulated force which gives a heating force in normal vacuum for

velocities in the order of kv<F/2 (as expected from the TWM lineshape, fig. lb), can be

transformed to a cooling force in squeezed vacuum. The dashed lines in the figure are the results of

the spatially averaged analytic solution which show good agreement with the numerical solution at

small velocities.
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Figure 2: The velocity dependence of the spatially averaged force, in normal vacuum trace A and squeezed vacuum

trace B, obtained by numerical solution of the OBE. The dashed lines are the result of the analytic solution. The

parameters used for this figure are: A=-3F, f_=l. 36F, F=10 7 Hz and _.=5890 A for both traces and N=I., M=',/2

and ¢ =0 for trace B.

Figure 3 demonstrate the interesting dependence of the force on the driving laser phase 0

(using the analytic solution eq.2 with kv=F/2 ).This is shown for a constant number of photons in

the squeezed vacuum, N=I, but for various values of the squeezing parameter M. Trace A plots the

force for thermal light M=0 (i.e no correlation between the sidebands) with no variation on the

phase, as expected. Traces B-D , however, show large variations of the force for increasing

degree of squeezing up to the maximum value of M, (M2=N[N+I 1). This dependence is due to the

different amount of noise that the induced dipole sees at different quadrature phase. Figure 3 also

shows that even a modest amount of squeezing induce large effects on the force.
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Figure 3: The spatially averaged force as a function of the laser phase _ for increasing amount of correlation between
the sidebands A)M=0 (thermal light no correlation), B) M=0.5, C)M=I and D)M=_]2 (maximum squeezing). Other

common parameters used are: A=-3F, t'_l. 5F and N=I.

THE QUANTUM FLUCTUATIONS

It was recognized by Einstein 12 as early as 1917 that the fluctuations of the optical force,

originating from both spontaneous and induced absorption and emission processes, are important

in determining the Maxwellian distribution of the atomic velocity in thermal equilibrium. A simple

momentum diffusion process which comes readily to mind is due to the random direction of the

spontaneous emission recoils. In addition to this geometrical source of fluctuations one should

also consider the fluctuations in the number of photons emitted in a unit time . However, this

process can have sub Poisson statistics, as shown by Mandel 13 in resonance fluorescence, and

give rise to an anomalous contribution 3,14 which can decrease the momentum spread, as

discussed by Cook 14. An additional momentum diffusion mechanism becomes dominant at high

intensities in a standing wave due to fluctuations in the stimulated emission process between the

counter-propagating waves 3,14,5. This photon exchange between the waves, results in a random

transfer of 2hk units of momentum to the atom. Finally as shown by Gordon and Ashkin 3 an

atom even in its ground state can have random recoils due to the zero point vacuum fluctuations.

In the following it will be shown that the dynamics in squeezed vacuum modifies the fluctuations
,0

of all of these processes.

We are now interested in finding the force fluctuations on a stationary atom which are

given by the diffusion constant, 2Dp •

169



2Dp =2 Re I dt [<1_(0) F(t)> - <_>2 ]
Eq.6

Insertion of F(t) = -t_VG + H.c. for the force (where G is the freely propagating field), using

the correlation functions for squeezed vacuum,<G>=f2 (since<b>=0) and the commutation relation

(yij O'kl=(Yil _(j,k) for the atomic operators gives •

-" 2

(F(0)F(t)) = fi2[(_t(0)_(t) + _(0)_*(t)) I(_a)21 - (_t(0)o_(t)X _)2- (o(0)o(t))(va*) 1 Eq.7

-+-(hk)2[ + (Y22) + F((Y22)] 8(0FN

Consider first the last terms which depend directly on the quantum fluctuations of the field. These

terms in the limit of normal vacuum(N=0) can be transparently modeled 3 as the random

instantaneous emissions of momenta hk at an average rate of U<CY22>. In the squeezed vacuum

case, this effect is enhanced, by the absorption of squeezed photons FN<o 11> and spontaneous

emission FN<cY22> due to the larger number of photons in the squeezed vacuum.

In order to evaluate the remaining terms, which describe the effects of the interaction of the

coherent field gradient with the atomic dipole fluctuations,we need to find the integral of the atomic

dipole autocorrelation functions which after some algebra leads to the following expression for

the diffusion in squeezed vacuum:

2i)p= D0+h2_2____ P P )[ s s
[1 + DI] + h2a2rl 0+

(2N+I+P) 2,- (2N+i+P 1 + D1 + D; + D_]
Eq.8

Where c_=0, [3=k in a running wave; and ot=-ktan(k x) ,

other terms are defined by • _+ = 2N+1 + 2M cos(2O),

P _+

(2N+ l+p) 2 _(2N+ 1)_-

[3=0 in a standing wave while the

and the standing wave terms;
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4Pr,2 1, A2 A2D_I=(2N+I_--_)2q___+ c F2 _--_1(1 ) D_ (2N+l--_2,_q_ + _--F__

g

4 z p3

FF 1@-@+ (2N+ 1+p)2

In the limit of normal vacuum (N=M=0) Eq.8 corresponds to the the results of ref.3 eq. 30

u 3} 1(I+P) 2 -1-_ + h2a 2 1 (1-__-- _ - (l+p)-----_ + F2 (I+p)2J

P
+ h2k2F

2(l+P)

Let us first examine the terms in the running wave case by associating them with the normal

vacuum limit. As we discussed previously spontaneous emission in squeezed vacuum, represented

by the diffusion term D 0, gives rise to increased fluctuations as a consequence of the increased

number of photons in this state. However, as can be clearly seen, the D 1 induced absorption

contribution, even in the normal vacuum limit, can reduce the spread. This term has been shown

to originate from sub Poisson statistics of the emitted photons. In fact in the normal vacuum limit

D 1 coincides exactly with Mandel's Q parameter 13,14 .

Q= {(Any)- {n)

<n)

Q--O indicates a variance of <n> 1/2 in the number of the emitted photons(i.e no correlation between

the photons) and negative Q sub-Poisson statistics. Figure 4 plots D 1 as a function of the laser

detuning. In squeezed vacuum, with an appropriate phase between the laser and the squeezed

vacuum, D 1 can reach a value of-l, whereas in normal vacuum the maximum effect gives DI= -

3/4. This indicates that in squeezed vacuum the photons can be emitted in an orderly manner,thus

eliminating this source of fluctuations. Unfortunately, in the traveling wave case, one can not take

advantage of this phenomenon due to the increased spontaneous emission term D O. This is

demonstrated in figure 5a, which shows that the equilibrium temperature, given by

KbT= Dp/(-0v<F>), increases with the amount of squeezing.

We now turn our attention to the more complicated case of the standing wave, as in the
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running wave case, we still have enhanced fluctuations due to the larger spontaneous emission

term, D o . However, the much larger average cooling force, in conjunction with the smaller

fluctuations, of the higher order terms, make it possible to reach temperatures lower than otherwise

obtained in normal vacuum. Unfortunately, one can not take full advantage of both of these effects
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Figure 4: The deviation from Poisson statistics as a function of the laser detuning from resonance.The dashed line

shows the maximum effect in normal vacuum, while the solid line indicates that almost no spread in the number of

photons emitted in a unit time in squeezed vacuum can be achieved. The parameters used are _--0.35F in the normal

vacuum while _=0.26F, N=2, M2=N(N+I) and # = 0.5 rt in the squeezed vacuum.
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Figure 5: The equilibrium temperature as a function of the squeezing parameter N in: a) running coherent laser

cooling wave with A=0.5F, f2=F, ¢_= 0.25 n. b) a standing wave with A=0, f2=5F, _ = 0.6 r_ .The dashed line is
the Doppler limit temperature in normal vacuum.

at the same laser phase. Nevertheless, one can choose a particular phase which will minimize the

temperature as the squeezing increases. Figure 5b demonstrates the lowering of the equilibrium

temperature below the normal vacuum level (N=0) as the amount of squeezing increases.
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Moreover, the temperature can be decreased to values slightly below the Doppler limit (which in

normal vacuum is achieved at low intensity). Lowering the equilibrium temperature is not the only

benefit of squeezing, in the above example, the average force becomes larger than the maximum

value in the normal vacuum giving rise to a shorter equilibrium time. Notice, however, that high

degree of squeezing is needed in order to reach sub-Doppler temperature, in addition, degradation

from ideal squeezing (M2<N(N+I)) results in a temperatures higher than the Doppler limit. This

unfortunately makes the experimental demonstration of this effect rather difficult.

A few words are now in order to get some insight into the modification of the fluctuations

in the standing wave case. We first discuss the various terms in the normal vacuum case. The most

notable difference from the running wave is the appearance of higher order terms in P. These terms

were interpreted as resulting from the fluctuations of the dipole force 3,5, 14an d become important

at high laser intensity. In particular the p3 term is the only term that does not saturate at high P.

Hence, although one can use the stimulated force in normal vacuum at the blue side of resonance to

give a very large average cooling force(with the advantage of very short equilibrium time) the large

fluctuations make the equilibrium temperature much higher than the Doppler limit 5

With regard to the modification of these processes in squeeze vacuum, we begin by

comparing the D1 s term to its counterpart in normal vacuum. As discussed in the running wave

case, this term can be interpreted as the deviation of the fluctuations from Poisson statistics. We

found that the modified D1 s in squeezed vacuum can reach values close to -1. However, the

behavior in a standing wave is quite different from the running wave, as is the case in the normal

vacuum.

The next term, D2 s , is not present in a running wave and we assume that it describes the

fluctuations of the lower order stimulated force. In a previous publication 6, it was shown that

while the velocity dependent stimulated force does not usually occur at low intensity, the inclusion

of phase interrupting events (which increase the dipole decay rate), gives rise to a stimulated force

term at lower order in laser intensity. In order to show that this identification is correct and to get

some insight into this term D2 s was calculated in normal vacuum but with increased dipole decay

F2=F/2+F o, where F, is the rate of phase interrupting events, which gives:

2p'2[I2 _21A+
As can be seen an additional diffusion occurs as phase noise is added, F 2 >F/2. Note, that

when F2<F/2 , this term becomes negative. Analogously, D2 s in squeezed vacuum may be

associated with the fluctuations of the extra stimulated force in squeezed vacuum (the first term in
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the averageforce in squeezedvacuum, <FS>. Moreover, the fact that one of the dipole's

quadraturecomponentscandecayat aratesmallerthanF/2suggeststhatD2s in squeezedvacuum

canbecomenegative,asindeedis thecase.

Finally we turnour attentionto thehighestordertermin P, D3 s, which is associated with

the fluctuations of the normal stimulated force.The modification of this diffusion term is critical for

achieving lower temperature at high laser intensity where the stimulated force becomes dominant.

Figure 6 shows the spatially averaged total diffusion constant 2Dp, in a high intensity standing

wave, as a function of the laser phase, in normal and squeezed vacuum.This comparison

demonstrates the dramatically reduced fluctuations in a high intensity standing wave under

squeezed vacuum conditions.
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Figure 6: The diffusion constant in a high intensity standing wave as a function of the laser phase in the case of
normal vacuum (dashed line) and squeezed vacuum(solid line) .The parameters used are: A=0, f_=5F, N=5.

As to the experimental verification of these interesting phenomena. Although 90% squeezing has

already been achieved in the laboratory, it is important to note, that the calculation presented here is

carried out with the assumption that the atom is embedded in squeezed vacuum. In practice, the

output of present sources of squeezed light (degenerate parametric oscillators) can couple only to

part of the 4r_ steradians enveloping the atom. A possible solution to this problem has been

proposed by Gardiner who suggested coupling the squeezed modes to the atom in a micro cavity.

The other important assumption here is that the spectrum of the squeezing is much broader than

that of the atomic transition. Theories which include finite bandwidth of squeezing 15 have shown

that the essential features due to squeezing are preserved, even for a bandwidth of squeezing only a

few times larger than the width of the atomic transition. It should also be noted that it will be

interesting to develop the theory with bandwidth of squeezing larger than F but smaller than the

Mollow sidebands separation. This can introduce the possibility of controlling all three of the
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decay rates of the atom and therefore might reduce the problem the diffusion due to of the higher

rate of spontaneous emission in a broad band squeezed light 16

In conclusion, this paper demonstrates a dramatic modification of the quantum fluctuations

of the mechanical effects of light on atoms which are also embedded in squeezed vacuum. In the

running wave case the temperature can not be lowered below the normal vacuum level. However,

in conjunction with the modified average cooling force even sub-Doppler temperatures may be

reached, under ideal conditions, for atoms cooled in a standing wave. These interesting results, in

addition for being of potential use, offer some insight into the quantum statistics of the photon

exchanges between the atom and the field under squeezed vacuum conditions. Further investigation

of other schemes of cooling with squeezed light might also be beneficial
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